Data Modeling and ebXML for Supply Chain Traceability

Alessio Bechini, Mario G.C.A. Cimino, Francesco Marcelloni, Andrea Tomasi

Dept. of Information Engineering
University of Pisa, Italy
This presentation has been shown at the

European Workshop

on Food Traceability Information Modeling

Dubrovnik, Croatia - Oct. 12th, 2007

The presentation content is based on a subset of the ideas and work reported in the following paper:

A. Bechini, M.G.C.A. Cimino, F. Marcelloni, and A. Tomasi

“Patterns and Technologies for Enabling Supply Chain Traceability through Collaborative e-Business”

Information and Software Technology, Elsevier
- in press, as Oct. 2007 - available from ScienceDirect,
doi:10.1016/j.infsof.2007.02.017

Contacts:
Mario G.C.A. Cimino – mario.cimino@iet.unipi.it
Alessio Bechini – a.bechini@ing.unipi.it
Overview

- Traceability scenarios
- Interaction among parties
- Reference data model
- Supply chain modeling?
- Business Process interoperability (ebXML)
- Overall traceability framework architecture
- Conclusions
Traversing Supply Chains

Goal:
• Effective (& efficient) supply chain traversal; Traceability (tracking/tracing)

Key concepts:
• Lot
• Activity
• Responsible Actor
• Relation

Needs:
• Semantic context
• Generic entities
• Univocal ID
• (Quality)
Interaction among Parties

• Each responsible actor belongs to a company involved in the supply chain
• Information exchanges among responsible actors
• Heterogeneous structure and naming of data
• Tackling heterogeneous semantics
• Large and Dynamic community
 – scalability in number of parties
 (depending on the market…)
• Managing the Business status of agreements
• Facing failure scenarios
Parties and Lot Info Management

- The lot flow through the supply chain is associated with information exchanges among responsible actors (and possibly third-party organizations).
- Lot flow vision (from fluids dynamics): Eulerian vs Lagrangian reference frame.
- Push model: each responsible actor pushes traceability data into a centralized storage.
- Pull model: data stored more advantageously at the source (distribute storage).
- Data Confidentiality and control → Intermediate data trustees.
Central vs. Distributed Management

- (a) distributed and (b) central management
- Identifiers attached to the physical lot
- “Push” strategy
Intermediate Data Trustee

- Distributed management, intermediate data trustee
- “Pull” strategy
Generic Traceability Semantics

a) Lot -> Acquisition -> Lot
 Lot -> Providing -> Lot

b) Lot -> Division -> Lot
 Lot -> Integration -> Lot

c) Lot -> Alteration -> Lot

d) Lot -> Transformation -> Lot

e) Lot

f) Lot
Data Model: Basic Activities

Nature
- [extracted]
 - Acquisition
 - Lot [acquired]
 - Transformation
 - Providing
 - Lot [provided]
 - [damaged]

Responsible Actor
- Lot [transformed]

Consumer
- [consumed]
Data Model: Lot State Diagram

- At the beginning, a lot is acquired by an actor from the "Nature".
- A lot is transformed by an activity into another lot.
- At the end, an actor provides the "Nature" or the "Consumer" with a lot.

Diagram:

- **acquired**
 - Acquisition activity
 - Transformation activity
 - Providing activity

- **transformed**
 - Transformation activity
 - Providing activity

- **provided**
 - Providing activity
Reference Data Model (in UML)

- Two distinct packages
- Notion of **Traceable Entity**
- Traceable ID: EAN/UCC (barcode), EPC (rfid)
Start: Modeling the Supply Chain

- The correct understanding of lot flow comes from correct specs of the supply chain.
- The reference data model helps in the supply chain specification.
- The reference data model drives the focus towards traceability issues.
- Traceability needs may influence the supply chain layout.
Example: Macro-activities

FISH SUPPLIER
- FISHING
 - STORAGE
 - SELLING_1
 - CHECK
 - PROCESSING
 - PACKAGING
 - DISTRIBUTOR
 - DISTRIBUTION

Smocked Salmon

REFRIGERATION
- SELLING_2
 - Packaged Salmon
Supply Chain Model

- UML Activity diagram, pointing out:
 - Activities
 - Lots
 - Actors (swimlanes...)
 - Sites...
Example: Obj Diagram Lot/Activity

- **storageTemperature**: NumericalQF
 - description: "temperature of storage"
 - value = -35
 - unitName = "°C"
 - minValue = -30
 - maxValue = -40

- **processingFirm**: ResponsibleActor
 - A_ID
 - name
 - telephone

- **storedSalmon**: Lot
 - ID

- **storageDefrosting**: Activity
 - date
 - duration

- **cell**: Site
 - S_ID
Example: Assorted Quality Features
Lot Flow Snapshot: Crucial Points

- **acquiredSalmon_1 : Lot**
- **selectedSalmon_1 : Lot**
- **storedSalmon_1 : Lot**
- **selectedSalmon_2 : Lot**
- **selectedSalmon_3 : Lot**
- **salmonFilet_1 : Lot**
- **salmonFilet_2 : Lot**
Pursuing BP Interoperability

Technological needs:
- Highly distributed architecture
- Dealing with multiple software interfaces
- Tackling heterogeneity
- Loosely coupled communication
- Facing failure scenarios

Methodological needs:
- Relying on standard inter-organizations cooperation models and protocols
- Strongly separating the Business level from the technical one
- Managing the Business status of agreements
Traceability / e-Business Standards

- ebXML
 (Electronic Business using eXtensible Markup Language)

- Globally developed standard (ISO15000) started in 1999 as an initiative of OASIS and the United Nations/ECE agency CEFACT
BP Interoperability: ebXML Outline

- Many trading partners collaborate to create working relationship
- Interchange defined as requestor / responder
- Business transactions control the process progression state
- Partners within a community share business definitions/understanding
- Support for Business Scalability (SMEs can effectively participate, not just large corporations)
ebXML Specifications

- Technical Architecture (TA)
- Message Services (ebMS)
- Collaboration Protocol Agreements - Collaboration Protocol Profile (CPA/CPP)
- Business Process Spec. Schema (BPSS)
Setting Up the Collaboration

- Parties, roles, contributions, processes in a supply chain undergo *evolution*
- The collaboration framework in the traceability system requires formal agreements on functional and technical details
- Exploiting ebXML: why not?
- What degree of automation can be reached?
ebXML: Business Collaboration
ebXML Messaging Service

Main features:
- message packaging
- reliable messaging
- message ordering
- error handling

- security
- synchronous reply
- message status service
- persistent storage
- QoS support (CPA)

Basic Message Service Handler Architecture
BPSS, UMM, CPP/CPA…

Diagram showing the relationship between various models and schemas:

- UMM Metamodel
- Semantic Subset
- Specification Schema (UML)
- Production Rules
- Specification Schema (XML)
 - DTD
 - W3C Schema
- Business Signal Definitions
- Core Components
- Business Document Definitions
- CPP
- CPA
- TP Document DTD’s
Purchase Activity: Example

Messages between provider/requestor agents
distributed storage (a)
central storage (b)

- Identifier attached to the physical lot
Purchase Info in XML

```xml
<activity type ="purchase">
  <id>A055</id>
  <respActorId>A009</respActorId>
  <startingDate>2004-04-15 16:20:19</startingDate>
  <duration unit ="hour">1</duration>
  <siteId>S007</siteId>
  <qualityFeature>...</qualityFeature>
  <generatedLot>
    <id>T047</id>
  </generatedLot>
  <componentLots>
    <id>L033</id>
    <respActorId>A009</respActorId>
  </componentLots>
</activity>

b) lot

<lot type ="Wine Cask">
  <id>T047</id>
  <respActorId>A009</respActorId>
  <generationDate>2004-04-15 16:20:19</generationDate>
  <siteId>T038</siteId>
  <activityId>A005</activityId>
  <qualityFeature>...</qualityFeature>
</lot>

a) activity
Info on Quality Features

```
red winery : Site
S_ID = "S007"
address = "Via Bottinaccio, 37 - 41066 Montelupo (Fi) - Italy"

producer : Responsible Actor
RA_ID = "A001"
name = "Tom White"

: Categorical QF
description = "rating"
value = "2 stars"

: Numerical QF
description = "color intensity"
value = 8.21
unit name = "Intensity"
min value = 1
max value = 10

: Categorical Value
value = "1 stars"
ordering = 0
description = "good"

: Categorical Value
value = "2 stars"
ordering = 1
description = "very good"

: Categorical Value
value = "3 stars"
ordering = 2
description = "excellent"
```

Quality Package

```
Quality Feature
description

Categorical QF
defines
Numerical QF
value
unit name
min value
max value
```
Overall XML Description

```xml
<activity type ="purchase">
 <id>A055</id>
 <respActorId>A009</respActorId>
 <startingDate>2004-04-15 16:20:19</startingDate>
 <duration unit ="hour">1</duration>
 <siteId>S007</siteId>
 <qualityFeature>...</qualityFeature>
 <generatedLot>
 <id>T047</id>
 <respActorId>A009</respActorId>
 </generatedLot>
 <componentLots>
 <id>L033</id>
 <respActorId>A009</respActorId>
 </componentLots>
</activity>

b) lot

```xml
<lot type ="Wine Cask">
  <id>T047</id>
  <respActorId>A009</respActorId>
  <startingDate>2004-04-15 16:20:19</startingDate>
  <generationDate>2004-04-15 16:20:19</generationDate>
  <siteId>T038</siteId>
  <activityId>A005</activityId>
  <qualityFeature>...</qualityFeature>
</lot>

c) numerical quality feature

```xml
<qualityFeature>
 <description>color intensity</description>
 <numericalQF>
 <unitName>"Intensity"
 <minValue>"1"
 <maxValue>"10"
 <value>8.21</value>
 </numericalQF>
</qualityFeature>
```

d) categorical quality feature

```xml
<qualityFeature>
 <description>ratings</description>
 <categoricalQF>
 <value>2 stars</value>
 <categoricalValue value="1 stars" ordering="0" description="good"/>
 <categoricalValue value="2 stars" ordering="1" description="very good"/>
 <categoricalValue value="3 stars" ordering="2" description="excellent"/>
 </categoricalQF>
</qualityFeature>
```
Traceability Framework Architecture
Conclusions

- Role of the Data Model
- Logical view of the supply chain
- Figure out what a lot is!
- Message Orientation (ebMS)
- Description Orientation (UML, XML)
- Granularity (small number of activity)
- Network Orientation (SOAP/HTTP)
- Platform Neutral (XML)